New drugs of abuse?
A case study on
Phenazepam & Methoxetamine

Presenter: Nadia Wong
Co-authors: Dr Yao Yi Ju & Alex Low Xuan Kai

Analytical Toxicology Laboratory
Clinical & Forensic Toxicology Unit
Applied Sciences Group
Health Sciences Authority
Singapore

Forensic & Clinical Toxicology Association
31 July - 3 August 2011, Melbourne, Australia
Content

- Aim
- Intro to Phenazepam
- Intro to Methoxetamine
- Case History
- Specimens Analysis
- Conclusion
Aim

• To present a case on potential abuse of Phenazepam and Methoxetamine in Singapore.
Intro to Phenazepam

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUPAC name</td>
<td>[7-bromo-5(2-chlorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one]</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>349.61</td>
</tr>
<tr>
<td>Molecular Formula</td>
<td>C_{15}H_{10}BrClN_{2}O</td>
</tr>
<tr>
<td>Half-life</td>
<td>About 60 hrs</td>
</tr>
</tbody>
</table>

History
Drug is currently in clinical use in Russia as a sedative-hypnotic drug since 1978. Dosage is usually administered at 0.5mg 2-3 times daily.

Effect Classification
Tranquilizer (class of benzodiazepine)

Metabolism
![Hydroxylation](image)

Drug effect
Dizziness, incoordination, asthenia and somnolence

Information are obtained from "Disposition of Toxic Drugs and Chemicals in Man", 8th ed, R.C. Baselt, Biomedical Publications, Foster City, California (2008)
Intro to Methoxetamine (MXE)

<table>
<thead>
<tr>
<th>IUPAC name</th>
<th>2-(3-methoxyphenyl)-2-(ethylamine) cyclohexanone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Weight</td>
<td>247.33</td>
</tr>
<tr>
<td>Molecular Formula</td>
<td>C${15}$H${21}$NO$_2$</td>
</tr>
<tr>
<td>Half-life</td>
<td>Not known</td>
</tr>
</tbody>
</table>

History

Currently no reported medicinal use. First publicly reported in 2010. A ketamine alternative for the laboratory research.

Effect Classification

Sedative, dissociative anesthesia

Metabolism

Not known

Drug effect

Hallucination and euphoria
Intro to Methoxetamine

- Arylcyclohexylamine class of chemical
- Analogue of ketamine
- Rational drug design

![Chemical structures](image)
Intro to Methoxetamine

- Arylcyclohexylamine class of chemical
- Analogue of ketamine
- Rational drug design

Controlled Drug in Singapore

Analogue

Ketamine

Methoxetamine
Appearance of Drugs

<table>
<thead>
<tr>
<th>Phenazepam</th>
<th>Methoxetamine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>White crystalline powder</td>
<td>White crystalline powder</td>
</tr>
</tbody>
</table>

Potential Drugs Abuse?

- Can be readily purchased through internet
- Information of drugs available on internet
 - Method and dosage of consumption
 - Sharing of experience by drug users
- Not controlled under the law
 - Singapore
 - USA
 - UK
Case History

1st case: 3. Apr. 2011
- 39 years old Chinese man with HIV positive
- Found unconscious in hotel room
- Symptom: slowness in motion
- Found 2 medications: Phenazepam & 2-(3-methoxyphenyl)-2-(ethylamine)cyclohexanone

2nd case: 3. Apr. 2011
- 43 years old Caucasian man
- Found unconscious on floor
- Symptom: Drowsiness
- Found 2 medications: Phenazepam & 2-(3-methoxyphenyl)-2-(ethylamine)cyclohexanone
Clinical Case

• Specimens were sent to Analytical Toxicology Laboratory for drugs screening.

• Specimens Type:
 ➢ Whole Blood (heparinised) 3 ml
 ➢ Urine 20 ml
Specimens Analysis

Blood/Urine
Liquid-liquid Extraction
GC/MS
LC/TOF-MS
Specimens Analysis

- Blood/Urine
- Liquid-liquid Extraction
- GC/MS
- LC/TOF-MS
Basic Drugs Extraction (LLE)

1 ml blood/urine

0.5 ml basic carbonate buffer (pH 12 ca.), vortex

5 ml 1-Chlorobutane containing Diphenoxylate (I.S), shake, centrifuge

4 ml supernatant, 100 μl acidic MeOH, evaporate under N₂

Reconstitute 100 μl MeOH

Instrument
Specimens Analysis

Blood/Urine

Liquid-liquid Extraction

GC/MS

LC/TOF-MS
Instrumentation: GC/MS

Agilent 7890A/5975 inert GCMS

GC condition:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>HP-5MS(25 m x 0.20 mm i.d. x 0.33 µm film thickness)</td>
</tr>
<tr>
<td>Oven equilibration time</td>
<td>0.50 min</td>
</tr>
<tr>
<td>Initial temperature</td>
<td>100 °C hold 1 min</td>
</tr>
<tr>
<td>Temperature programming</td>
<td>10 °C/min to 300 °C (hold 12 min)</td>
</tr>
<tr>
<td>Total run time</td>
<td>33 min</td>
</tr>
<tr>
<td>Injection temperature</td>
<td>300 °C</td>
</tr>
<tr>
<td>Purge time</td>
<td>0.3 min</td>
</tr>
<tr>
<td>Injection volume</td>
<td>2 µl</td>
</tr>
<tr>
<td>Injection mode</td>
<td>Splitless</td>
</tr>
<tr>
<td>Flow (constant)</td>
<td>1 ml/min (He)</td>
</tr>
</tbody>
</table>
Instrumentation: GC/MS

Agilent 7890A/5975 inert GCMS

MS condition:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition mode</td>
<td>El scan</td>
</tr>
<tr>
<td>Mass range</td>
<td>50 to 500 (m/z)</td>
</tr>
<tr>
<td>Threshold</td>
<td>150</td>
</tr>
<tr>
<td>MS transfer line temperature</td>
<td>280 °C</td>
</tr>
<tr>
<td>Source temperature</td>
<td>230 °C</td>
</tr>
<tr>
<td>Quadrupole temperature</td>
<td>150 °C</td>
</tr>
<tr>
<td>Solvent delay</td>
<td>1.5 min</td>
</tr>
</tbody>
</table>
GC/MS Chromatogram of a blood extract
GC/MS Chromatogram of a urine extract

I.S DIPHENOXYLATE

Unknown

Methoxetamine?
GC/MS Spectrum
Unknown samples vs White crystal found

Quality match = 97%

Unknown peak

White crystal
Library from Prof. Dr Hans H. Maurer

entry number 8506 in 2011 Maurer/Pfleger/Weber library
Specimens Analysis

- Blood/Urine
- Liquid-liquid Extraction
- GC/MS
- LC/TOF-MS
Instrumentation: LC/TOF-MS

Agilent HP1100 HPLC series

Chromatographic condition:

<table>
<thead>
<tr>
<th>Column</th>
<th>150 x 2.1 mm, Hypersil-BDS column (5 µm particle size)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile phase A</td>
<td>2 mM ammonium formate & 0.2% formic acid in water</td>
</tr>
<tr>
<td>Mobile phase B</td>
<td>2 mM ammonium formate & 0.2% formic acid in methanol</td>
</tr>
<tr>
<td>Column temp.</td>
<td>25 °C</td>
</tr>
<tr>
<td>Flow rate</td>
<td>0.4 ml/min</td>
</tr>
<tr>
<td>Volume injection</td>
<td>10 µl</td>
</tr>
</tbody>
</table>

Gradient elution programme:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>% B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>26</td>
<td>80</td>
</tr>
<tr>
<td>26.1</td>
<td>5</td>
</tr>
<tr>
<td>32</td>
<td>5</td>
</tr>
</tbody>
</table>
Instrumentation: LC/TOF-MS

Agilent 6210 Times-of-Flight Mass Spectrometer

MS TOF condition:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion polarity</td>
<td>Positive</td>
</tr>
<tr>
<td>Capillary voltage</td>
<td>+ 4000 V</td>
</tr>
<tr>
<td>Nebulizer pressure</td>
<td>40 psi</td>
</tr>
<tr>
<td>Drying gas flow</td>
<td>13.0 L/min</td>
</tr>
<tr>
<td>Drying gas temp.</td>
<td>350 °C</td>
</tr>
<tr>
<td>Mass range</td>
<td>100-1600 (m/z)</td>
</tr>
<tr>
<td>Fragmentor voltage</td>
<td>120 V</td>
</tr>
</tbody>
</table>
LC/TOF-MS Chromatogram of a blood extract

Phenazepam
MW= 347.9665

Phenazepam
Rt= 19.399 min
LC/TOF-MS Spectrum of Phenazepam in blood extract

Phenazepam
Formula = C_{15}H_{10}BrClN_{2}O
Measured mass = 347.9671
Nominal mass = 347.9665
Mass Accuracy (ppm) = -0.26

Characteristic isotopic pattern for compounds with Cl and Br atoms
LC/TOF-MS Chromatogram of a urine extract

Methoxetamine
MW = 247.1572

Methoxetamine
Rt = 12.095 min
LC/TOF-MS Spectrum of Methoxetamine in a urine extract

Methoxetamine
Formula = C₁₅H₂₁NO₂
Measured mass = 247.1571
Nominal mass = 247.1572
Mass accuracy (ppm) = -0.42
Summary of findings

GC/MS:

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Rt (min)</th>
<th>MW</th>
<th>Major ion Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenazepam</td>
<td>20.6</td>
<td>348</td>
<td>321, 350, 102, 75, 89, 177</td>
</tr>
<tr>
<td>Methoxetamine</td>
<td>13.3</td>
<td>247</td>
<td>190, 219, 134, 176</td>
</tr>
</tbody>
</table>

LC/TOF-MS:

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Rt (min)</th>
<th>MW</th>
<th>Molecular Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenazepam</td>
<td>19.4</td>
<td>347.9665</td>
<td>$\text{C}{15}\text{H}{10}\text{BrClN}_{2}\text{O}$</td>
</tr>
<tr>
<td>Methoxetamine</td>
<td>11.8</td>
<td>247.1572</td>
<td>$\text{C}{15}\text{H}{21}\text{NO}_{2}$</td>
</tr>
</tbody>
</table>
Final Toxicology Results

1st Case:
- Blood
 - Lignocaine
 - Nevirapine
 - Phenazepam
- Urine
 - Lignocaine
 - Nevirapine
 - Phenazepam
 - Methoxetamine

2nd Case:
- Blood
 - Phenazepam
- Urine
 - Ephedrine
 - Phenazepam
 - Methoxetamine
Conclusion

• **Methoxetamine** is first time being reported in Singapore
• No literature being reported.
Acknowledgement

• Prof. Dr. Hans H. Maurer
 Department Head, Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Germany

• Dr Yao Yi Ju
 Laboratory Director, Analytical Toxicology Laboratory, Clinical & Forensic Toxicology unit

• Alex Low Xuan Kai
 Scientist, Analytical Toxicology Laboratory, Clinical & Forensic Toxicology unit

• Tan Ying Ying
 Senior Scientist, Illicit Drug Laboratory

• All staff of the Analytical Toxicology Laboratory, Clinical & Forensic Toxicology unit
References

Thank You!
Nadia_Wong@hsa.gov.sg